ISCL is a Intelligent Information Consulting System. Based on our knowledgebase, using AI tools such as CHATGPT, Customers could customize the information according to their needs, So as to achieve

Cancer Cells Die Naturally When 'Defect' Fixed

6
Cancer Cells Die Naturally When 'Defect' Fixed

Cancer Cells Die Naturally When 'Defect' Fixed


Stripped of Protective Defect, Cancer Cells Succumb to Suicide

Sept. 20, 2004 -- Fixing a defect in cancer cells makes them die a natural death, a study in mice shows.

The finding means that a series of new anticancer drugs already in development are likely to work. They may work very well indeed, the study suggests.

When normal cells reach the end of their useful life, they self-destruct. This suicide process is called programmed cell death or apoptosis. But cancer cells have a defective self-destruct program. They make too much of a molecule called BCL-2, which gobbles up the chemical messengers that activate cell suicide.

Anthony Letai, MD, PhD, Stanley Korsmeyer, MD, and colleagues at Dana-Farber Cancer Institute wondered what would happen if they stripped cancer cells of their BCL-2 armor.

"What better way to kill cancer cells than targeting the molecules that directly control their survival?" Letai asks in a news release.

To see what would happen if cancer cells didn't have BCL-2 protection, the researchers created a strain of genetically engineered mice whose BCL-2 could be switched off by a common antibiotic. The mice also carried a gene that gave them leukemia.

That's exciting news. Until this experiment, nobody was sure that simply removing the barrier to cell suicide would result in cancer-cell death.

"Abnormalities in genes affecting [programmed cell death] have been found in nearly every cancer, suggesting they may be necessary to develop cancer," Letai and colleagues write in the September 2004 issue of Cancer Cell.

Several drug companies are working on treatments that would block BCL-2. BCL-2 is crucial for proper immune function. But the mouse studies suggest that humans could tolerate a temporary BCL-2 block long enough for such future drugs to have an anticancer effect.

Senior study author Korsmeyer serves on the scientific advisory board of IDUN Pharmaceuticals, which is developing cell-death therapeutics.
Source...
Subscribe to our newsletter
Sign up here to get the latest news, updates and special offers delivered directly to your inbox.
You can unsubscribe at any time

Leave A Reply

Your email address will not be published.